Mapping for Silicon Run IIb

L. Bagby, A. Nomerotski, E. von Toerne

December 2002

http://d0server1.fnal.gov/projects/run2b/Silicon/www/smt2b/readout/mapping.htm

Mapping/Cabling Requirements

- 1. Do not move the 80 conductor cables
- 2. Do not move the 50 conductor cables
- 3. Avoid cable knots
- 4. Each HV channel has channel from only one VRB
- 5. Each stave goes into one VRB (soft constr.)
- 80-cond. cable requirements (from STT / see B.Reay's note)
- 1. Do not combine different stave types I,II,III,IV
- 2. Do not combine hybrids from different 30deg. sectors
- 3. Do not combine L0 with other layers
- 4. Do not combine L4 with other layers
- 5. Do not combine a layer with any other layer (soft constr.)

PowerPCs and Single Board Computers are accessed thru Ethernet

How many hybrids does it take to ...

Type	#channels
hybrid	1
stave	4
jumper cable	1
junction card	3
tw.Pair cable	1
adapter card	4
80-conductor cable	2 8
interface board	
50-conductor cable	2
sequencer	8
sequencer fiber	2 8
VRB	8
HV channel	4

Lyn's Mapping Suggestion

							_							_	_																
																					SOUTHWEST	•									
				-	-			-						-							INTEREACE								\vdash		
																					INTERFACE										
			1.2												1B										ΟA						
	ı	III	ı	1	III	III	II	IV			II	IV	III	II	IV	III	II	IV	Ш		TYPE		ı	III	ı	I	III	III	II	IV	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	SLOT	1	2	3	4	5	6	7	8	9	10
		0-10				2-10							2-12								SES:		0-5		1-5		1-6		3-7		2-5
	0-9	0-10	1-9	4-17		3-14							3-17												1-5				4-10		
	0-9	0-10		5-20		4-19	5-22	5-24	5-20		5-27	5-29	4-23	5-17	5-19	4-15	5-22	5-24	4-19				0-5	0-6		5-10		4-11	5-12	5-14	5-25
				5-21		5-23			5-21				5-28			5-18			5-23							5-11		5-13			5-26
																					SEQUENCER										
												_									SEQUENCER										
			1.4	<u> </u>											1B				SEC	Q7					O.A	\					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		1	2	3	4	5	6	7	8	9	10
								<u> </u>			0-9											•	_	_		_	_		3-9		
				l			 	\vdash			0-9	0-10	1-9	4 4-	2-10	3-13	3-15	4 4 6	4 4 7	2-10									3-9 4-12		
				-			-					0-10	1-9	4-17	3-14	4-18	4-20	4-18	4-17	3-14											
							ļ				0-9	0-10	1-10	5-20	4-19	5-22	5-24	5-22	5-20	4-19			0-5	0-6					5-14		
													1-10	5-21	5-23	3-15	4-20	5-24	5-21	5-23					1-6	5-11	5-13	3-18	4-24	5-29	5-26
																					VRB										
									1420	26.0					_																M20
				_		_			M20	<u> </u>	-				_									_			_	_			ı∨ı∠Ç
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		1	2	3	4	5	6	7	8	9	10
																														0-9	0-10
																															0-10
				-	-			\vdash		-				-													_				0-10
				l			 	-								 										 				0-9	0-10
																					<u> </u>										
																					VRB										
									M20	77.0																					M20
									IVIZ	<i>,,</i> -0									_												IVI∠U
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		1	2	3	4	5	6	7	8	9	10
																														0-7	0-8
																															0-8
																														0-7	
							1					-			-	1	l .									1	-	-			
				-																							_	_			
																					VRB										
									M20	ე8-ი																					M20
1	2	3	4	5	_	7	8	_	10	11	10	12	1.4	15	16	17	10	10	20	24		1	2	3	4	F	_	7	0	_	10
		3	4	_ 5	6		8	9	10	1.1	12	13	14	15	16	17	ıδ	19	∠∪	∠1		1		3	4	5	6		8		10
																										ļ				0-5	
																														0-5	
				1			l									l										l				0-5	0-6
																				_	Cooter OA of	6	-								
																				A	Sector 3A_3E	3									

Readout Electronics

- Interface Boards
 - 8 crates (144 boards) located inside the detector volume
 - Regenerates signals
 - SVX monitoring and power management
 - Bias voltage distribution

- SEQuencers
 - 6 crates (120 boards) located on the detector platform
 - Use SVX control lines to actuate acquisition, digitization and readout
 - Convert SVX data to optical signals

- VRBs (Readout Buffers)
 - 12 crates (120 boards) located in counting house
 - Data buffer pending L2 trigger decision
 - Input @ 5-10 kHz L1 accept rate ~
 50 Mb/s/channel
 - Output @ 1 kHz L2 accept rate ~50 Mb/s

Installation

HV distribution

Naming of Installed Parts

A few technical terms

Module: A sensor/hybrid combo in Layers L2-5

Types: 10/10A 20/20A 10/10S 20/20S

Stave: 10/10A+20/20A+10/10S+20/20S+support

Ladder: Sensors ganged together in readout

(1 Module = 2 Ladders)

General Remarks

- Labeling of production parts and installed parts differs
- •Worst case naming scenario: Each subgroup uses different names for the same installed object: HV naming different from DAQ naming different from reconstruction different from MC simulation ...
- •It might be convenient to have a scheme similar to RunIIa
 - •Because it is convenient not to have to learn new names
- •It might be better **NOT** to have a scheme similar to RunIIa
 - •Because the detector geometry is very different and the naming should reflect the geometry.
- •The proposed scheme is a good compromise of these two principles

Module Position on Stave

Naming of ladders: Lisa will use "barrel" label

Stave Location in R-phi

Stave Location in R-phi

Naming of Layer 0 and 1

Naming of Layer 0 and 1 Sensors

South End

North End

Naming of Module/Staves – Part2

- •How to address a sensor located inside the run IIb detector?
- •Use stave number and local sensor number

L3-08NA-6

- •It is in layer 3, North side, Axial alignment
- •in an outer radius stave (because of even stave number)
- •the 6th sensor from the middle of the detector => outermost sensor on the north side
- •Advantage: Everybody is able to find it using the map
- •Hybrid locations are labeled by module

Naming of Production Parts

Naming of Production Parts, Hybrids

- •Name of Production parts conveys part properties.
- •Hybrid properties to appear in naming:
 - Layer 0 / L1 / L2-5 Axial / L2-5 Stereo
- •I suggest to label production hybrids with a 4-digit number, following a suggestion by Jim Fast
- •Highest significant number could indicate the hybrid type

Label	Hybrid
0	LO
1	L1
2	L2-5 Axial
3	L2-5 Stereo

Example: Hybrid-0001 Layer0

Hybrid-1001 Layer1

Hybrid-2001A Layer2-5 Axial

Hybrid-3001S Layer2-5 Stereo

How does the database handle preceding 0's?
Does the database accept hyphens?
How do we handle pre-production parts?

Highest Significant Digit

Naming of Production Parts, Sensors

- •Layer 0 / L1 / L2-5
- •production sensors with a 4-digit number
- •The highest significant number indicates the sensor type

Label	Sensor
0	LO
1	L1
2,3	L2-5

Highest Significant Digit

Naming of Production Parts, Modules

- •L2-5 Modules named after hybrid they contain
- + appendix to indicate 10/10 and 20/20 Modules

Hyb-2001A (L2-5, axial hybrid) becomes either

- •M-2001-10/10A or
- •M-2001-20/20A

Naming of junction cards/adapter cards

- •No differentiation by layer
- Assign consecutive production numbers

Naming of L0 flex cables

•Assign production numbers based on layer and length -> will talk to Noel

Naming of jumper cables

Differentiation by length

Naming of twisted pair cables

Consecutive production numbers

Naming of Production Parts, Staves

- Are all staves alike? Yes!
- •We can label staves with consecutive production numbers: Stave-1, Stave-2, Stave-3, ... Stave-199 ...
- •Once the staves are installed, they receive numbers that indicate their location. Location numbers and production numbers will be different and can be mapped onto each other using the database.
- •The map can be put into excel and posted on the web.
- That way everybody will know where his/her favorite stave/hybrid/sensor ended up. This knowledge is important for the operation of the detector.